Главная - Грузовой транспорт
Критическое состояние вещества. Параметры критического состояния вещества Какое состояние пара называют критическим

Выше было объяснено, что для превращения пара в жидкость нужно повышать давление и понижать температуру. Таким путем английскому ученому М. Фарадею удалось перевести в жидкое состояние многие вещества, которые до этого были известны только в газообразном состоянии. Однако некоторые газы долго не удавалось перевести в жидкое состояние даже при весьма больших давлениях. Теоретическое объяснение этих неудач дал русский ученый Д. И. Менделеев.

Границей, отделяющей жидкость от окружающей среды, является свободная поверхность жидкости. Наличие этой поверхности дает нам возможность точно указать, где находится жидкая фаза вещества и где газообразная. Такое резкое различие между жидкостью и ее паром в основном объясняется тем, что, вообще говоря, плотность жидкости во много раз больше, чем у ее пара. Однако если нагревать жидкость в герметически закрытом сосуде, то вследствие расширения жидкости ее плотность будет уменьшаться, а плотность паров над ее поверхностью будет возрастать. Это означает, что различие между жидкостью и ее насыщающим паром в процессе такого нагревания сглаживается и при достаточно высокой температуре должно исчезнуть совсем.

В 1861 г. Менделеев установил, что для каждой жидкости должна существовать такая температура, при которой исчезает всякое различие между жидкостью и ее паром. Менделеев назвал ее «температурой абсолютного кипения». Экспериментально исследовал процесс превращения пара в жидкость и обратно при различных давлениях английский ученый Т. Эндрюс. Он показал, что такая температура для каждой жидкости действительно существует, и ввел для нее новый термин: критическая температура , который и используется в настоящее время.

Критической температурой t К Р вещества называется татя температура, при которой плотность жидкости и плотность ее насыщающего пара становятся одинаковыми. График изменения плотности воды и ее насыщающего пара в зависимости от температуры показан на рис. 8.8; из рисунка видно, что для воды критическая температура t К Р соответствует 374°С. Поскольку не только плотность, но и давление насыщающего пара однозначно определяется его температурой, можно построить график зависимости давления р от температуры t для насыщающего пара (рис. 8.9).

Давление насыщающего пара какого-либо вещества при его критической температуре называется критическим давлением t К Р. Оно является наибольшим возможным давлением насыщающих паров этого вещества. Для воды р КР =22,1*10 6 Па. При критической температуре удельная теплота парообразования воды равна нулю. Это относится и к другим жидкостям. Следовательно, при критической температуре теряется всякое различие между жидкостью и ее паром, а граница между ними исчезает. Это означает, что при температуре выше tкp вещество может существовать только в одном состоянии, которое называют газообразным, и в этом случае никаким увеличением давления превратить его в жидкость нельзя.

Если вещество находится при критической температуре и критическом давлении, то его состояние называют критическим состоянием. Объем, занимаемый веществом при критическом состоянии, называется критическим объемом t К Р. Он является наибольшим объемом, который может занимать имеющаяся масса вещества в жидком состоянии. В таблицах обычно даются значения критического объема для одного моля вещества. Значения t К Р, р КР и V КР (для одного моля) называются критическими параметрами вещества (табл. 8.3).

Наблюдать переход вещества через критическое состояние можно при нагревании эфира в ампуле (рис. 8.10, а - г). При изготовлении ампулы в нее вводится такая масса эфира, объем которой в критическом состоянии равен внутреннему объему ампулы. При охлаждении, когда температура становится ниже критической, эфир переходит в жидкое состояние (рис. 8.10, д, е).

Теперь видно, что принципиальной разницы между газом и паром нет. Обычно газом называют вещество в газообразном состоянии, когда его температура выше критической. Паром также навивают вещество в газообразном состоянии, но когда его температура ниже критической. Следовательно, пар можно перевести и жидкость одним только увеличением давления, а газ - нельзя.

Сходство свойств ненасыщенных паров и газов натолкнуло М. Фарадея на предположение: не являются ли газы ненасыщенными парами соответствующих жидкостей? Если предположение верно, то можно попытаться сделать их насыщенными и сконденсировать. Действительно, сжатием удалось сделать насыщенными многие газы, кроме шести, которые М. Фарадей назвал "постоянными": это азот, водород, воздух, гелий, кислород, оксид углерода CO.

Чтобы понять, в чем здесь дело, изучим подробнее изотермический процесс сжатия (расширения) пара. Мы видели, что изотерма реального газа отличается от изотермы идеального газа наличием горизонтального участка, соответствующего области существования двухфазной системы: насыщенного пара и жидкости.

Если проводить опыты при более высоких температурах , то можно обнаружить закономерность, общую для всех веществ (рис. 1).

Во-первых, чем выше температура, тем меньше объем, при котором начинается конденсация газа: , если .

Во-вторых, чем выше температура, тем больше объем, занимаемый жидкостью после того, как весь пар конденсируется:

Следовательно, длина прямолинейного участка изотермы с ростом температуры уменьшается.

Это легко объяснить: с ростом Т давление насыщенного пара быстро нарастает, и для того, чтобы давление ненасыщенного пара сравнялось с давлением насыщенного, необходимо уменьшение объема. Причина увеличения объема - в тепловом расширении жидкости при нагревании. Так как объем уменьшается, то плотность паров при увеличении температуры увеличивается; увеличение объема свидетельствует об уменьшении плотности жидкости. Это значит, что различие между жидкостью и ее насыщенным паром в процессе такого нагревания сглаживается и при достаточно высокой температуре должно исчезнуть совсем.

Д. Менделеев установил, что для каждой жидкости должна существовать такая температура, которая экспериментально впервые была установлена для многих веществ Т. Эндрюсом и носит название критической температуры.

Это такая температура, при которой плотность жидкости и плотность ее насыщенного пара становятся одинаковыми (рис. 2).

На изотермах при Т = горизонтальный участок превращается в точку перегиба К.

Давление насыщенного пара какого-либо вещества при его критической температуре называется критическим давлением . Оно является наибольшим возможным давлением насыщенных паров вещества.

Объем, который занимает вещество при и , называется критическим объемом . Это наибольший объем, который может занимать имеющаяся масса вещества в жидком состоянии.

При критической температуре различие между газом и жидкостью исчезает, и поэтому удельная теплота парообразования становится равной нулю.

Совокупность точек, соответствующих краям горизонтального участка изотерм (см. рис. 1), выделяет в плоскости p-V области существования двухфазной системы и отделяет ее от областей однофазных состояний вещества. Пограничная кривая области двухфазных состояний со стороны больших значений объема описывает состояние насыщенного пара и одновременно представляет собой кривую конденсации (начинается конденсация пара при изотермическом сжатии). Пограничная кривая со стороны меньших объемов представляет собой кривую, на которой заканчивается конденсация при сжатии насыщенного пара и начинается испарение жидкости при изотермическом расширении. Ее называют кривой испарения .

Существование критической температуры вещества объясняет, почему при обычных температурах одни вещества могут быть как жидкими, так и газообразными, а другие остаются газами.

Выше критической температуры жидкость не образуется даже при очень высоких давлениях.

Причина заключается в том, что здесь интенсивность теплового движения молекул оказывается настолько большой, что даже при относительно плотной их упаковке, вызванной большим давлением, молекулярные силы не могут обеспечить создание даже ближнего, а тем более дальнего порядка.

Таким образом, видно, что принципиальной разницы между газом и паром нет. Обычно газом называют вещество в газообразном состоянии, когда его температура выше критической. Паром называют также вещество в газообразном состоянии, но когда его температура ниже критической. Пар можно перевести в жидкость одним только увеличением давления, а газ нельзя.

В настоящее время все газы переведены в жидкое состояние при очень низких температурах. Последним в 1908 г. переведен гелий ( = -269 °С).

КРИТИЧЕСКОЕ СОСТОЯНИЕ ВЕЩЕСТВА, состояние вещества, возникающее в критической точке и её окрестности, в котором сосуществующие в равновесии фазы по своим физическим свойствам становятся неотличимыми друг от друга. Для критического состояния вещества характерно возникновение критических явлений, а также изменение рода фазового перехода с 1-го на 2-й, сопровождающееся изменением характера кинетики этого перехода. В области состояний вещества вне пределов критического состояния вещества образование более упорядоченной фазы на фоне менее упорядоченной происходит обычно по механизму нуклеации, или зародышеобразования, тогда как в области критического состояния вещества установление ближнего порядка в менее упорядоченной фазе реализуется посредством флуктуационного механизма.

Наиболее простым примером критического состояния вещества является состояние однокомпонентной системы вблизи точки окончания фазовой границы газ - жидкость на диаграмме состояния давление (р) - температура (Г). Критическое состояния вещества имеет место при одновременном выполнении двух условий: р ≥ р кр, Т ≥ Т кр, а при значительном превышении критических значений р кр и Т кр принято говорить о сверхкритическом состоянии вещества. При критическом состоянии вещества полностью отсутствуют физические различия между жидкостью и газом, в том числе становятся равными друг другу характеризующие эти фазы плотности ρ ж и ρ г. Наличие критического состояния вещества позволяет осуществить переход между этими фазами непрерывным образом, избежав обычного для фазового перехода 1-го рода газ - жидкость положительного или отрицательного (в зависимости от направления перехода) скачка плотности Δρ = ρ ж - ρ г, поглощения или выделения (в зависимости от направления перехода) теплоты фазового перехода, а также появления межфазного поверхностного натяжения.

Отсутствие теплоты перехода при использовании критического состояния вещества связано с плавным изменением одной из термодинамических функций состояния - энтропии, характеризующей степень упорядоченности (в данном случае так называемого ближнего порядка) жидкой фазы по сравнению с газообразной. Для фазовой границы жидкость - твёрдое тело на диаграмме (р, Т) критическая точка (и, следовательно, критическое состояние вещества) отсутствует, поскольку характеризующий твёрдое тело так называемый дальний порядок в принципе не может быть непрерывным образом получен из характеризующего жидкость ближнего порядка.

В многокомпонентных системах возникновение критического состояния вещества становится возможным на линиях или поверхностях, соединяющих критические точки отдельных компонентов.

Лит. смотри при ст. Критические явления.

Первые наблюдения над изменениями характеристик веществ, происходящими в критическом (жидкость-пар) состоянии, были проведены при нагревании жидкостей в запаянных стеклянных трубках. Метод экспериментального определения критических температур по исчезновению мениска в ампуле в настоящее время реализован А.Г. Назмутдиновым на кафедре ТО и НХС СамГТУ.

В общем случае критическое состояние может характеризовать не только равновесие “жидкость-пар”, а и состояние, например, двухфазной системы, в котором сосуществующие в равновесии несмешивающиеся жидкости становятся тождественными по всем своим свойствам. Для решения задач, рассматриваемых в данном пособии, важно парожидкостное равновесие.

Параметры системы, представленной индивидуальным веществом и находящейся в критическом состоянии (давление, температура, объем), называются критическими свойствами этого вещества. При температурах выше сосуществование рассматриваемых фаз в равновесии невозможно, система превращается в гомогенную. В этом смысле критическое состояние является предельным случаем двухфазного равновесия.

В критическом состоянии поверхностное (межфазное) натяжение на границе раздела сосуществующих фаз равно нулю, поэтому вблизи критического состояния легко образуются системы, состоящие из множества капель или пузырьков (эмульсии, аэрозоли, пены). Вблизи критического состояния резко возрастает величина флуктуаций плотности (в случае чистых веществ) и концентраций компонентов (в многокомпонентных системах), что приводит к значительному изменению ряда физических свойств вещества. Наличие флуктуаций плотности приводит к оптической неоднородности системы, к рассеянию света. Это явление носит название критической опалесценции. Рассеяние света служит источником сведений о величине и характере флуктуаций в критической области.

При приближении к критическому состоянию свойства сосуществующих фаз (плотность, теплоемкость и др.) изменяются резко, но без скачка. Поэтому критическое состояние наблюдается лишь при равновесии изотропных (isos - греч., равный; tropos- греч., свойство), т.е. равных во всех направлениях фаз (жидких или газовых) или кристаллических фаз с одинаковым типом решетки. Независимо от природы сосуществующих фаз (типа двухфазного равновесия) и числа компонентов в критическом состоянии система имеет вариантность на 2 меньше, чем в обычном гомогенном состоянии, т.е. число степеней свободы равно нулю.

В чистых веществах (однокомпонентных системах) критическое состояние всегда имеет место для равновесия “жидкость-пар”, если вещество при критических параметрах стабильно. На диаграмме состояния критическому состоянию отвечает конечная точка кривой равновесия, называемая критической точкой. Изотермы на диаграммах P-V (рис. 4.2, 4.3) при температурах ниже представляют собой ломаные линии. При критической температуре изотерма является плавной кривой, имеющей точку перегиба с горизонтальной касательной. Выше ни при каких давлениях невозможно сосуществование жидкости в равновесии с паром.

Критическая температура чистого (индивидуального) вещества может быть определена как максимальная температура, при которой жидкая и паровая фазы еще могут сосуществовать в равновесии. Давление паров при этой температуре называется критическим давлением, а объем, отнесенный к одному молю или другой единице массы вещества, - критическим молярным или удельным объемом соответственно.

Упрощенное представление о критической точке может быть получено на основе рассмотрения кинетической обстановки в жидкой фазе. Потенциальная энергия взаимного притяжения молекул, обусловливающая существование жидкой фазы, уравновешивается в какой-то степени кинетической энергией молекул. Последняя стремится хаотически рассеять все частицы жидкости. Таким образом, давление паров есть результат того, что некоторые из молекул жидкости имеют достаточно высокую кинетическую энергию, чтобы вырваться из поля действия сил сцепления жидкости. С увеличением температуры жидкости кинетическая энергия молекул возрастает, силы же сцепления меняются незначительно. Температура, при которой средняя молекулярная кинетическая энергия становится равной потенциальной энергии притяжения, называется критической, так как при более высоком значении температуры существование жидкой фазы становится невозможным.

Математическим критерием критического состояния являются равенства

из которых следует, что критическая температура () - это точка перегиба изотермы на плоскости P-V при критических давлении и объеме. Согласно этим уравнениям, в критическом состоянии давление в системе не изменяется при изотермическом изменении объема. Слабая зависимость давления от объема может сохраняться в значительном интервале температур вдали от критической точки. Иногда критическое состояние наблюдается в равновесии двух кристаллических модификаций, параметры которых сближаются с ростом давления и температуры и становятся идентичными в критической точке.

В двойных системах, как и в чистых веществах, равновесное сосуществование жидкой и паровой фаз всегда заканчивается критическим состоянием. Для некоторых систем с ограниченной взаимной растворимостью компонентов существуют, кроме того, критические состояния как предельные случаи равновесного сосуществования двух жидких или двух кристаллических фаз (твердых растворов). В некоторых случаях возможное в принципе критическое состояние может не реализоваться, если на рассматриваемое двухфазное равновесие накладывается равновесие других фаз. Например, при понижении температуры или повышении давления начинается кристаллизация одной или обеих жидких фаз.

Равновесие “жидкость-газ” для смесей на плоской диаграмме состояния в координатах “давление-состав” изображается изотермами, которые состоят из кривых конденсации и кривых кипения. Эти кривые замыкаются в критических точках, геометрическое место которых является проекцией пространственной критической кривой в данной системе координат. Критическая кривая заканчивается в критических точках чистых компонентов. По мере повышения температуры область двухфазного состояния системы уменьшается, стягиваясь при в точку, совпадающую с критической точкой более летучего компонента.

Равновесие “жидкость-жидкость” может заканчиваться верхней критической точкой смешения (растворимости) или нижней критической точкой смешения (растворимости), в зависимости от того, увеличивается или уменьшается взаимная растворимость компонентов с повышением температуры. В общем случае система может иметь обе критические точки; пограничная кривая, отделяющая область гомогенного состояния системы при любых составах от области ее расслаивания на две жидкие фазы, имеет вид замкнутого овала.

В двойных системах с ограниченной взаимной растворимостью газов наблюдается критическое состояние для равновесия “газ-газ”. Экспериментально обнаружены только нижние критические точки смешения газов, хотя в принципе возможно существование и верхних критических точек. Критическое состояние газов бывает двух типов. Первый обнаружен в смесях, одним из компонентов которых является гелий. Расслаивание газовой смеси начинается в критической точке менее летучего компонента. По мере повышения температуры интервал составов, соответствующих двухфазному состоянию газовой смеси, сужается, а давление повышается. Вся критическая кривая расположена при более высоких давлениях и температурах, чем кривые равновесия “жидкость-пар”. В случае критического состояния второго типа расслаивание газовой смеси начинается при температуре, для которой еще наблюдается равновесие “жидкость-пар”, т.е. при температуре ниже критической точки менее летучего компонента. Изотерма равновесия “жидкость-газ” соприкасается с изотермой равновесия “газ-газ” в точке, которая является двойной критической точкой.

Критические кривые могут иметь особые точки, в которых термодинамическое поведение системы отличается от поведения в остальных точках критической кривой. Особыми точками являются, например, критические точки равновесия “жидкость-пар” в случае бесконечно разбавленных растворов. Их особенность состоит в том, что в пределах x i - >0 значения некоторых свойств системы зависят от пути подхода к этому пределу. Например, парциальный молярный объем растворителя равен молярному объему чистого растворителя только в том случае, если переход x i - >0 происходит при давлениях и температурах, которые являются критическими параметрами для чистого растворителя. Вдали от критической точки парциальный молярный объем растворителя в бесконечно разбавленном растворе при любых температурах и давлениях не равен молярному объему чистого растворителя. Критическая точка азеотропной смеси и точки минимума и максимума на критической кривой также считаются особыми.

В многокомпонентных системах возможны двухфазные равновесия различных типов, оканчивающиеся критическим состоянием. В тройных системах критические точки образуют критическую поверхность с несколькими особыми точками. Наиболее важно появление критических точек высшего порядка, в которых сливаются критические кривые равновесий “жидкость-пар” (в присутствии второй жидкой фазы) и “жидкость-жидкость” (в присутствии газовой фазы).

Основные положения классической теории критического состояния были сформулированы Дж. Гиббсом и Л.Д. Ландау. Современная теория позволяет предсказать поведение вещества в критическом состоянии по известным свойствам двухфазного состояния. Изучение критического состояния имеет важное практическое значение. Многие технологические процессы протекают в области, близкой к критическому состоянию, или в закритической области параметров. Очевидно, что для проектирования и эксплуатации подобных производств необходимо четко представлять особенности критического состояния.

Установление понятия о критическом состоянии сыграло большую роль в технике сжижения газов. Стали тривиальными примеры, относящиеся к истории получения в жидком состоянии таких газов, как водород (t c = -239,9 0 С), гелий (-267,9 0 С), неон (-228,7 0 С) и др.

Критическая температура

Critical temperature

Температура, выше которой, газ не может быть превращен в жидкость ни при каком давлении. Выше критической температуры вещество не может находиться в двухфазном состоянии и процессы конденсации и испарения становятся невозможными. Давление, соответствующее критической точке, называется критическим давлением, а объем – критическим объемом.

Применительно к нефтяным газам, состоящим из смеси углеводородов с различными критическими температурами и давлениями, пользуются псевдокритическими давлением и температурой, представляющими собой суммы произведений относительного содержания данного углеводорода в смеси (в долях единицы, если задано объемное содержание, или в молях) и значений критических давлений и температур этих же углеводородов.

Отношение давления (температуры), под которым находится смесь газов, к псевдо-критическому давлению (температуре) называется приведенным псевдокритическим давлением (температурой), зная которые можно найти значения коэффициентов сверхсжимаемости реальных газов.


Краткий электронный справочник по основным нефтегазовым терминам с системой перекрестных ссылок. - М.: Российский государственный университет нефти и газа им. И. М. Губкина . М.А. Мохов, Л.В. Игревский, Е.С. Новик . 2004 .

Смотреть что такое "Критическая температура" в других словарях:

    Критическая температура - это предельно допустимая температура электроизоляционных материалов, использованных для изготовления элементов светильников, выше которой происходит их оплавление, воспламенение и т.д. Источник: НПБ 249 97: Светильники. Требования пожарной… … Словарь-справочник терминов нормативно-технической документации

    Критическая температура - фазового перехода такая температура, при которой плотность и давление насыщенного пара становится максимальными, а плотность жидкости, находящейся в динамическом равновесии с паром, становится минимальной. Критическая температура смешения… … Википедия

    КРИТИЧЕСКАЯ ТЕМПЕРАТУРА - 1) теып ра в ва в его критическом состоянии. Для индивидуальных в в К. т. определяется как темп pa, при к рой исчезают различия в физ. св вах между жидкостью и паром, находящимися в равновесии. При К. т. плотности насыщенного пара и жидкости… … Физическая энциклопедия

    КРИТИЧЕСКАЯ ТЕМПЕРАТУРА - 1) предельная Температура равновесного сосуществования двух фаз (жидкости и ее пара), выше которой эти фазы неразличимы (см. Критическое состояние).2) Температура, при которой в жидких смесях с ограниченно растворимыми компонентами наступает их… … Большой Энциклопедический словарь

    КРИТИЧЕСКАЯ ТЕМПЕРАТУРА - а) температура вещества в его (см.), определяется как температура равновесного сосуществования двух фаз (жидкости и её пара), выше которой может существовать лишь одна фаза. Сжижение газов возможно только при охлаждении их ниже критической точки; … Большая политехническая энциклопедия

    критическая температура - Температура, при которой происходит разрушение сгораемых материалов (плавление, обугливание, выделение дыма, тление и т.д.) [ГОСТ 17677 82] Тематики лампы, светильники, приборы и комплексы световые … Справочник технического переводчика - Critical temperature Критическая температура. Температура, выше которой паровая фаза не может быть сконденсирована в жидкость при увеличении давления. (

 


Читайте:



Психосоматика: Луиза Хей объясняет, как избавиться от болезни раз и навсегда

Психосоматика: Луиза Хей объясняет, как избавиться от болезни раз и навсегда

Луиза Хей - создатель таблицы заболеваний по психосоматике, куратор движения самопомощи, общественный деятель, волонтер, автор больше чем 35...

Интересные факты из жизни Жанны Дарк (15 фото)

Интересные факты из жизни Жанны Дарк (15 фото)

Спустя 83 года после начала Столетней войны между Англией и Францией дела последней считались решенными. Договор в Труа, лишавший дофина Карла...

Программа «Учимся общаться» для детей с РАС (4–5 лет)

Программа «Учимся общаться» для детей с РАС (4–5 лет)

Адигамова Надия РавильевнаДолжность: педагог–психологУчебное заведение: МБДОУ №103Населённый пункт: г. ТомскНаименование материала:...

После инсульта быстрее восстановить речь

После инсульта быстрее восстановить речь

Из этой статьи вы узнаете: как происходит восстановление речи после инсульта, какими могут быть речевые нарушения, и насколько они обратимы. Что...

feed-image RSS