Главная - Пдд
Рассчитать время изменения давления при постоянной температуре. Газовые законы. Справочник компрессорной техники

ОПРЕДЕЛЕНИЕ

Процессы, при которых один из параметров состояния газа остается постоянным называют изопроцессами .

ОПРЕДЕЛЕНИЕ

Газовые законы - это законы, описывающие изопроцессы в идеальном газе.

Газовые законы были открыты экспериментально, но все они могут быть получены из уравнения Менделеева-Клапейрона.

Рассмотрим каждый из них.

Закон Бойля-Мариотта (изотермический процесс)

Изотермическим процессом называют изменение состояния газа, при котором его температура остаётся постоянной.

Для неизменной массы газа при постоянной температуре произведение давления газа на объем есть величина постоянная:

Этот же закон можно переписать в другом виде (для двух состояний идеального газа):

Этот закон следует из уравнения Менделеева - Клапейрона:

Очевидно, что при неизменной массе газа и при постоянной температуре правая часть уравнения остается постоянной величиной.

Графики зависимости параметров газа при постоянной температуре называются изотермами .

Обозначив константу буквой , запишем функциональную зависимость давления от объема при изотермическом процессе:

Видно, что давление газа обратно пропорционально его объему. Графиком обратной пропорциональности, а, следовательно, и графиком изотермы в координатах является гипербола (рис.1, а). На рис.1 б) и в) представлены изотермы в координатах и соответственно.


Рис.1. Графики изотермических процессов в различных координатах

Закон Гей-Люссака (изобарный процесс)

Изобарным процессом называют изменение состояния газа, при котором его давление остаётся постоянным.

Для неизменной массы газа при постоянном давлении отношение объема газа к температуре есть величина постоянная:

Этот закон также следует из уравнения Менделеева - Клапейрона:

изобарами .

Рассмотрим два изобарных процесса с давлениями и title="Rendered by QuickLaTeX.com" height="18" width="95" style="vertical-align: -4px;">. В координатах и изобары будут иметь вид прямых линий, перпендикулярных оси (рис.2 а,б).

Определим вид графика в координатах .Обозначив константу буквой , запишем функциональную зависимость объема от температуры при изобарном процессе:

Видно, что при постоянном давлении объем газа прямо пропорционален его температуре. Графиком прямой пропорциональности, а, следовательно, и графиком изобары в координатах является прямая, проходящая через начало координат (рис.2, в). В реальности при достаточно низких температурах все газы превращаются в жидкости, к которым газовые законы уже неприменимы. Поэтому вблизи начала координат изобары на рис.2, в) показаны пунктиром.


Рис.2. Графики изобарных процессов в различных координатах

Закон Шарля (изохорный процесс)

Изохорным процессом называют изменение состояния газа, при котором его объем остаётся постоянным.

Для неизменной массы газа при постоянном объеме отношение давления газа к его температуре есть величина постоянная:

Для двух состояний газа этот закон запишется в виде:

Этот закон также можно получить из уравнения Менделеева - Клапейрона:

Графики зависимости параметров газа при постоянном давлении называются изохорами .

Рассмотрим два изохорных процесса с объемами и title="Rendered by QuickLaTeX.com" height="18" width="98" style="vertical-align: -4px;">. В координатах и графиками изохор будут прямые, перпендикулярные оси (рис.3 а, б).

Для определения вида графика изохорного процесса в координатах обозначим константу в законе Шарля буквой , получим:

Таким образом, функциональная зависимость давления от температуры при постоянном объеме является прямой пропорциональностью, графиком такой зависимости является прямая, проходящая через начало координат (рис.3, в).


Рис.3. Графики изохорных процессов в различных координатах

Примеры решения задач

ПРИМЕР 1

Задание До какой температуры нужно изобарически охладить некоторую массу газа с начальной температурой , чтобы объем газа уменьшился при этом на одну четверть?
Решение Изобарный процесс описывается законом Гей-Люссака:

По условию задачи объем газа вследствие изобарного охлаждения уменьшается на одну четверть, следовательно:

откуда конечная температура газа:

Переведем единицы в систему СИ: начальная температура газа .

Вычислим:

Ответ Газ нужно охладить до температуры .

ПРИМЕР 2

Задание В закрытом сосуде находится газ под давлением 200 кПа. Каким станет давление газа, если температуру повысить на 30%?
Решение Так как сосуд с газом закрытый, объем газа не меняется. Изохорный процесс описывается законом Шарля:

По условию задачи температура газа повысилась на 30%, поэтому можно записать:

Подставив последнее соотношение в закон Шарля, получим:

Переведем единицы в систему СИ: начальное давление газа кПа= Па.

Вычислим:

Ответ Давление газа станет равным 260 кПа.

ПРИМЕР 3

Задание В кислородной системе, которой оборудован самолет, имеется кислорода при давлении Па. При максимальной высоте подъема летчик соединяет с помощью крана эту систему с пустым баллоном объемом . Какое давление установится в ней? Процесс расширения газа происходит при постоянной температуре.
Решение Изотермический процесс описывается законом Бойля-Мариотта:

Закон Гей-Люссака: при постоянном давлении объем газа изменяется прямо пропорционально абсолютной температуре.

Закон Бойля-Мариотта: при постоянной температуре давление, производимое данной массой газа, обратно пропорционально объему газа.

Газовые законы

Изучение свойств газообразных веществ и химических реакций с участием газов сыграло настолько важную роль в становлении атомно-молекулярной теории, что газовые законы заслуживают специального рассмотрения.

Экспериментальные исследования, по изучению химических реакций между газообразными веществами, привели Ж.-Л. Гей-Люссака (1805) к открытиюзакона объемных отношений: при неизменных температуре и давлении объемы реагирующих газов относятся друг к другу и к объ­емам газообразных продуктов реакции как небольшие целые числа . Так, при образовании хлорида водорода из простых веществ (H 2 + Cl 2 = 2HCl), объемы реагирующих и полученных веществ относятся друг к другу как 1:1:2, а при синтезе Н 2 О из простых веществ (2H 2 + О 2 = 2H 2 О) это соотношение – 2:1:2.

Эти пропорции нашли объяснение в законе Авогадро: в равных объемах разных газов при одинаковых условиях (температуре и давлении) содержится равное количество молекул . Молекулы простых газообразных веществ, таких как водород, кислород, хлор и др., состоят из двух атомов.

Из закона Авогадро вытекает два важных следствия:

Молекулярная масса (н. у.) газа или пара (M 1) равна произведению его относительной плотности (D) к любому другому газу на молекулярную массу последнего (M 2)

M 1 = D ∙ M 2 ;

D = M 1 / M 2 – отношение массы данного газа к массе другого газа, взятого в том же объеме, при той же температуре и том же давлении.

Например, азот тяжелее гелия в 7 раз, поскольку плотность азота по гелию равна:

D He (N 2) = M (N 2) / М (Не) = 28/4 =7

- моль любого газа при нормальных условиях (Р 0 = 1 атм или 101,325 кПа или 760 мм.рт.ст. и температура Т 0 = 273,15 К или 0°С) занимает объем 22,4 л.

Газообразное состояние вещества заданной массы характеризуется тре­мя параметрами: давлением Р , объемом V и температурой Т . Между этими величинами были экспериментально установлены следующие соотношения.

Р 2 / Р 1 = V 1 / V 2 , или РV = const.

V 1 / Т 1 = V 2 / Т 2 , или V/Т = const.

Р 1 / Т 1 = Р 2 / Т 2 , или Р/Т = const.

Эти три закона можно объединить в один универсальный газовый закон :

Р 1 V 1 / Т 1 = Р 2 V 2 / Т 2 , или РV /Т = const.

Это уравнение было установлено Б. Кла­пейроном (1834 г.). Значение постоянной в уравнении зависит только от количества вещества газа. Уравнение для одного моля газа было выведено Д.И. Менделеевым (1874 г.). Для одного моля газа постоян­ная называется универсальной газовой постоянной и обозначается R = 8,314 Дж/(моль К) = 0,0821 л∙атм/(моль∙К)


РV=RТ ,

Для произвольного количества газа ν правую часть этого уравнения надо умножить на ν :

РV= νRТ или РV= (т/М)RТ ,

которое называют уравнением Клапейрона-Менделеева. Это уравне­ние справедливо для всех газов в любых количествах и для всех зна­чений Р, V и Т , при которых газы можно считать идеальными.

Поскольку при изобарическом процессе P постоянно, то после сокращения на P формула принимает вид

V 1 /T 1 =V 2 /T 2 ,

V 1 /V 2 =T 1 /T 2 .

Формула является математическим выражением закона Гей-Люссака: при постоянной массе газа и неизменном давлении объём газа прямо пропорционален его абсолютной температуре.

Изотермический процесс

Процесс в газе, происходящий при постоянной температуре, называется изотермическим. Изотермический процесс в газе был изучен английским ученым Р.Бойлем и французским ученым Э. Мариотом. Установленная ими опытным путем связь получается непосредственно из формулы путем сокращения на T:

p 1 V 1 =p 2 V 2 ,

p 1 /p 2 =V 1 /V 2.

Формула является математическим выражением закона Бойля - Мариота : при постоянной массе газа и неизменной температуре давление газа обратно пропорционально его объему. Иначе говоря, в этих условиях произведение объёма газа на соответствующее давление есть величина постоянная:

График зависимости p от V при изотермическом процессе в газе представляет собой гиперболу и называется изотермой. На рисунке 3 изображены изотермы для одной и той же массы газа, но при разных температурах Т. При изотермическом процессе плотность газа изменяется прямо пропорционально давлению:

ρ 1 /ρ 2= p 1 /p 2

Зависимость давления газа от температуры при постоянном объеме

Рассмотрим, как зависит давление газа от температуры, когда его масса и объем остаются постоянными. Возьмем закрытый сосуд с газом и, будем нагревать его (рисунок 4). Температуру газа t будем определять с помощью термометра, а давление манометром М.

Сначала поместим сосуд в тающий снег и давление газа при 0 0 С обозначим р 0 , а затем будем постепенно нагревать наружный сосуд и записывать значения р и t для газа.

Оказывается, что график зависимости р и t, построенный на основании такого опыта, имеет вид прямой линии (рисунок 5).

Если продолжить этот график влево, то он пересечется с осью абсцисс в точке А, соответствующей нулевому давлению газа. Из подобия треугольников на рисунке 5, а можно записать:

P 0 /OA=Δp/Δt,

l/OA=Δp/(p 0 Δt).

Если обозначить постоянною l/ОА через α, то получим

α = Δp//(p 0 Δt),

Δp= α p 0 Δt.

По смыслу коэффициент пропорциональности α в описанных опытах должен выражать зависимость изменения давления газа от его рода.

Величина γ, характеризующая зависимость изменения давления газа от его рода в процессе изменения температуры при постоянном объёме и неизменной массе газа, называется температурным коэффициентом давления. Температурный коэффициент давления показывает, на какую часть давления газа, взятого при 0 0 С, изменяется при нагревании на 1 0 С. Выведем единицу температурного коэффициента α в СИ:

α =l ΠA/(l ΠA*l 0 C)=l 0 C -1

При этом длина отрезка ОА получается равной 273 0 С. Таким образом, для всех случаев температура, при которой давление газа должно обращаться в нуль, одинакова и равна – 273 0 С, а температурный коэффициент давления α =1/ОА=(1/273) 0 С -1 .




При решении задач обычно пользуются приближенным значением α равным α =1/ОА=(1/273) 0 С -1 . Из опытов значение α впервые было определено французским физиком Ж. Шарлем, который в 1787г. установил следующий закон: температурный коэффициент давления не зависит от рода газа и равен (1/273,15) 0 С -1 . Заметим, что это верно только для газов, имеющих небольшую плотность, и при небольших изменениях температуры; при больших давлениях или низких температурах α зависит от рода газа. Точно подчиняется закону Шарля лишь идеальный газ. Выясним, как можно определить давление любого газа р, при произвольной температуре t.

Подставив эти значения Δр и Δt в формулу, получим

p 1 -p 0 =αp 0 t,

p 1 =p 0 (1+αt).

Поскольку α~273 0 С, при решении задач формулу можно использовать в следующем виде:

p 1 =p 0

К любому изопроцессу применим объединенный газовый закон с учетом того, что один из параметров остается постоянным. При изохорическом процессе постоянным остается объём V, формула после сокращения на V принимает вид

2. Изохорический процесс . V- постоянен. P и T изменяются. Газ подчиняется закону Шарля. Давление, при постоянном объёме, прямо пропорционально абсолютной температуре

3. Изотермический процесс . T- постоянна. P и V изменяются. В этом случае газ подчиняется закону Бойля - Мариотта. Давление данной массы газа при постоянной температуре обратно пропорциональна объёму газа .

4. Из большого числа процессов в газе, когда изменяются все параметры, выделяем процесс, подчиняющийся объединенному газовому закону. Для данной массы газа произведение давление на объём, делённое на абсолютную температуру есть величина постоянная .

Этот закон применим для большого числа процессов в газе, когда параметры газа меняются не очень быстро.

Все перечисленные законы для реальных газов являются приближёнными. Погрешности увеличиваются с ростом давления и плотности газа.

Порядок выполнения работы:

1. часть работы .

1. Шланг стеклянного шара опускаем в сосуд с водой комнатной температуры (рис.1 в приложении). Затем шар нагреваем (руками, тёплой водой).Считая давление газа постоянным, напишите как объём газа зависит от температуры

Вывод:………………..

2. Соединим шлангом цилиндрический сосуд с миллиманометром (рис. 2). Нагреем металлический сосуд и воздух в нём с помощью зажигалки. Считая объём газа постоянным, напишите, как зависит давление газа от температуры.

Вывод:………………..

3. Цилиндрический сосуд, присоединённый к миллиманометру сожмем руками, уменьшая его объём (рис.3). Считая температуру газа постоянной, напишите, как зависит давление газа от объёма.

Вывод:……………….

4. Соединим насос с камерой от мяча и закачаем несколько порций воздуха (рис.4). Как изменилось давление объём и температура закаченного в камеру воздуха?

Вывод:………………..

5. Нальём в бутылку около 2 см 3 спирта, закроем пробкой со шлангом (рис. 5) , прикреплённым к нагнетающему насосу. Сделаем несколько качков до момента вылета пробки из бутылки. Как изменяются давление объём и температура воздуха (и паров спирта) после вылета пробки?



Вывод:………………..

Часть работы.

Проверка закона Гей - Люссака.

1. Нагретую стеклянную трубку достаём из горячей воды и опускаем открытым концом в небольшой сосуд с водой.

2. Удерживаем трубку вертикально.

3. По мере охлаждения воздуха в трубке вода из сосуда заходит в трубку (рис 6).

4. Находим и

Длина трубки и столба воздуха (в начале опыта)

Объём тёплого воздуха в трубке,

Площадь поперечного сечения трубки.

Высота столба воды, зашедшей в трубке при остывании воздуха в трубке.

Длина столба холодного воздуха в трубке

Объём холодного воздуха в трубке.

На основании закона Гей-Люссака У нас для двух состояний воздуха

Или (2) (3)

Температура горячей воды в ведре

Комнатная температура

Нам нужно проверить уравнение (3) и, следовательно закон Гей – Люссака.

5. Вычислим

6. Находим относительную погрешность измерения при измерении длины принимая Dl=0.5 см.

7. Находим абсолютную погрешность отношения

=……………………..

8. Записываем результат показания

………..…..

9. Находим относительную погрешность измерения Т, принимая

10. Находим абсолютную погрешность вычисления

11. Записываем результат вычисления

12. Если интервал определения отношения температур (хотя бы частично) совпадает с интервалом определения отношения длин столбов воздуха в трубке, то уравнение (2) справедливо и воздух в трубке подчиняется закону Гей- Люссака.

Вывод:……………………………………………………………………………………………………

Требование к отчёту:

1. Название и цель работы.

2. Перечень оборудования.

3. Нарисовать рисунки с приложения и сделать выводы для опытов 1, 2, 3, 4.

4. Написать содержание, цель, расчёты второй части лабораторной работы.

5. Написать вывод по второй части лабораторной работы.

6. Построить графики изопроцессов (для опытов 1,2,3) в осях: ; ; .

7. Решить задачи:

1. Определить плотность кислорода, если его давление равно 152 кПа, а средняя квадратичная скорость его молекул -545 м/с.

2. Некоторая масса газа при давлении 126 кПа и температуре 295 К занимает объём 500 л. Найти объём газа при нормальных условиях.

3. Найти массу углекислого газа в баллоне вместимостью 40 л при температуре 288 К и давлении 5,07 МПа.

Приложение

Закон идеального газа.

Экспериментальный:

Основными параметрами газа являются температура, давление и объём. Объем газа существенно зависит от давления и температуры газа. Поэтому необходимо найти соотношение между объемом, давлением и температурой газа. Такое соотношение называется уравнением состояния.

Экспериментально было обнаружено, что для данного количества газа в хорошем приближении выполняется соотношение: при постоянной температуре объем газа обратно пропорционален приложенному к нему давлению (рис.1) :

V~1/P , при T=const.

Например, если давление, действующее на газ, увеличится вдвое, то объем уменьшится до половины первоначального. Это соотношение известно как закон Бойля (1627-1691)-Мариотта(1620-1684) , его можно записать и так:

Это означает, что при изменении одной из величин, другая также изменится, причем так, что их произведение останется постоянным.

Зависимость объема от температуры (рис.2) была открыта Ж. Гей-Люссаком. Он обнаружил, что при постоянном давлении объем данного количества газа прямо пропорционален температуре:

V~T , при Р =const.

График этой зависимости проходит через начало координат и, соответственно, при 0К его объём станет равный нулю, что очевидно не имеет физического смысла. Это привело к предположению, что -273 0 С минимальная температура, которую можно достичь.

Третий газовый закон, известный как закон Шарля, названный в честь Жака Шарля (1746-1823). Этот закон гласит: при постоянном объеме давление газа прямо пропорционально абсолютной температуре (рис.3):

Р ~T, при V=const.

Хорошо известным примером действия этого закона является баллончик аэрозоля, который взрывается в костре. Это происходит из-за резкого повышения температуры при постоянном объеме.

Эти три закона являются экспериментальными, хорошо выполняющимися в реальных газах только до тех пор, пока давление и плотность не очень велики, а температура не слишком близка к температуре конденсации газа, поэтому слово "закон" не очень подходит к этим свойствам газов, но оно стало общепринятым.

Газовые законы Бойля-Мариотта, Шарля и Гей-Люссака можно объеденить в одно более общее соотношение между объёмом, давлением и температурой, которое справедливо для определенного количества газа:

Это показывает, что при изменении одной из величин P , V или Т, изменятся и две другие величины. Это выражение переходит в эти три закона, при принятии одной величины постоянной.

Теперь следует учесть ещё одну величину, которую до сих пор мы считали постоянной - количество этого газа. Экспериментально подтверждено, что: при постоянных температуре и давлении замкнутый объём газа увеличивается прямо пропорционально массе этого газа:

Эта зависимость связывает все основные величины газа. Если ввести в эту пропорциональность коэффициент пропорциональности, то мы получим равенство. Однако опыты показывают, что в разных газах этот коэффициент разный, поэтому вместо массы m вводят количество вещества n (число молей).

В результате получаем:

Где n - число молей, а R - коэффициент пропорциональности. Величина R называется универсальной газовой постоянной. На сегодняшний день самое точное значение этой величины равно:

R=8,31441 ± 0,00026 Дж/Моль

Равенство (1) называют уравнением состояния идеального газа или законом идеального газа.

Число Авогадро; закон идеального газа на молекулярном уровне:

То, что постоянная R имеет одно и то же значение для всех газов, представляет собой великолепное отражение простоты природы. Это впервые, хотя и в несколько другой форме, осознал итальянец Амедео Авогадро (1776-1856). Он опытным путём установил, что равные объёмы объемы газа при одинаковых давлении и температуре содержат одинаковое число молекул. Во-первых: из уравнения (1) видно, что если различные газы содержат равное число молей, имеют одинаковые давления и температуры, то при условии постоянного R они занимают равные объёмы. Во-вторых: число молекул в одном моле для всех газов одинаково, что непосредственно следует из определения моля. Поэтому мы можем утверждать, что величина R постоянна для всех газов.

Число молекул в одном моле называется числом Авогадро N A . В настоящее время установлено, что число Авогадро равно:

N A =(6,022045 ± 0,000031) · 10 -23 моль -1

Поскольку общее число молекул N газа равно числу молекул в одном моле, умноженному на число молей (N = nN A), закон идеального газа можно переписать следующим образом:

Где k называется постоянной Больцмана и имеет значение равное:

k= R/N A =(1,380662 ± 0,000044) · 10 -23 Дж/К

Справочник компрессорной техники

 


Читайте:



Уха из семги — что может быть вкуснее?

Уха из семги — что может быть вкуснее?

Секрет первых рыбных блюд в наваристом бульоне. Если купили целую тушку лосося, оставьте для этой цели голову, хвост, хребет, плавники и некоторые...

Вкусный и простой рецепт жареных пельменей!

Вкусный и простой рецепт жареных пельменей!

Споры о пельменной родословной не утихают никогда, ведь это изделие фигурирует во многих традиционных кухнях разных народов. Сегодня это самый...

Быстрая закуска из лапши в пакетиках типа ролтон Салат из роллтона с колбасой

Быстрая закуска из лапши в пакетиках типа ролтон Салат из роллтона с колбасой

О том, что с вермишелью быстрого приготовления можно готовить салаты, я узнала совсем недавно. Об одном из них (с корейской морковью) мне...

Как приготовить щупальца кальмара дома

Как приготовить щупальца кальмара дома

Мода на приготовление морепродуктов пришла к нам сравнительно недавно, лет так 20 назад. Современные супермаркеты предлагают широкий ассортимент...

feed-image RSS